domingo, 3 de junio de 2012

9.2.2 QUÍMICOS

Están basadas en la formación de complejos que las células sean capaces de adquirir e incorporar, bien sea directamente mediante la ruta endocítica fosfato cálcico, DEAE dextrano o a las membranas lipofección
Uno de los campos de estudio más importantes de las técnicas de transferencia de genes, son los estudios realizados con los llamados vectores sintéticos también usados en técnicas de terapia génica, con tal de evitar los problemas derivados de la utilización de virus para la transferencia de genes.

Método del fosfato cálcico:
Basado en la obtención de un precipitado entre el cloruro de calcio y el DNA en una solución salina de fosfatos. Aparentemente el agregado con calcio protege al DNA de la degradación por las nucleasas celulares. El tamaño y la calidad del precipitado es crítico para el éxito del proceso, que se ve afectado por factores tales como pequeños cambios en el pH de la solución.
                         
                                                                 

Método del DEAE dextrano:
Basado en la obtención de complejos entre la resina DEAE y el DNA. Los polímeros de DEAE dextrano o polybreno tienen una carga que les permite unirse a las muy negativamente cargadas moléculas de DNA. El DNA acomplejado se introduce en las células mediante choque osmótico mediante DMSO o glicerol. El uso de DEAE dextrano se limita a las transfecciones transientes. 



Método DNA desnudo:
Técnica basada en fase altamente experimental es incapaz de entrar en una célula y aún consiguiendo entrar en ellas es rápidamente degradado. La línea de investigación busca incorporar esas secuencias de DNA a un transportador, que le encierra y le lleva hasta la célula Diana en dónde a través de interacciones de membrana se asocia con ella para entregar el material al interior.
Los problemas que encontramos son que el DNA por ser estructura polar  tiene muchas dificultades para cruzar la membrana plasmática. Además el DNA codificante para  1 gen es aproximadamente de 10 kb, esto representa la longitud aproximada de una célula, en el caso de encontrar el DNA sin ningun tipo de compactación. 

                                


Método Péptidos fusiogénicos:
Los  péptidos fusiogénicos surgen en una línea de trabajo que nos permita paliar aquellas características del DNA desnudo que nos impiden la entrada.
Estos péptidos fusiogénicosa se utilizan para compactar DNA. y de este modo adoptan DNA con proteínas ricas en cargas +, del tipos Histonas. Esto supone una condensación considerable, ya que el DNA aparece en la forma de partículas de 50-150 nanometros, pero sólo un cierto grado de condensación permite que 1 transportador incluya 1 molécula de DNA. Asimismo la reducción de tamaño del DNA hasta unos 20 nanometros facilitaría el paso a la célula y hasta el núcleo, incrementando su protección contra las nucleases citoplasmáticas. En el proceso de penetración celular, los transportadores sintéticos (si su carga neta es +) interactuan con Aminoazucares de la Membrana plasmáticacon (carga -) para producir la incorporación a la célula en forma de endosomas. Por tanto tenemos un problema más a superar.

                                        

Método  de Liposomas:
Los liposomas estan formados por DNA y lípidos no inmunogénicos cargados positivamente lípidos cationicos.
Se empezó a trabajar con lípidos no inmunogénicosados, ya que la organización de los lípidos en bicapa podría facilitar el paso a través de la membrana citoplasmática. Aunque estos lípidos no englobaban mucho DNA.
A raiz de esto se crearon los liposomas que superan el problema de la compactación debido a que el DNA se contornea como consecuencia de las cargas positivas de lípidos (en los liposomas DNA está ocho veces más condensados que en  lípidos normales). Además se pretende controlar su destino mediante proteinas en membrana de liposoma. Una característica en común con la anterior es que se forman de forma espontanea si se colocan los dos en un mismo medio.



Bibliografía:
Metodos quimicos para la transformacion de plantas. Bayardo parra alferez cod. 90022151141  facultad de ciencias basicas biotecnologia vegetal

sábado, 2 de junio de 2012

9.2 MECANISMOS DE TRANSFERENCIA ARTIFICIAL:

9.2.1 FÍSICOS
Los métodos físicos utilizan técnicas como la microinyección con una fina aguja de cristal y la electroporación exposición de las células aun choque eléctrico.

La microinyección:
Es una técnica muy potente y eficaz, ya que 1 de cada 5 células consigue incorporar el DNA foráneo de forma permanente. El problema de esta técnica es que exclusivamente se puede inyectar una célula cada vez, y por tanto no es el más recomendable para una terapia médica debido a que es demasiado laboriosa como para obtener un número de células indicadas  para que el tratamiento tenga éxito.
Es una técnica muy efectiva aunque laboriosa. Es el método que se emplea en la introducción del DNA recombinante en las células embrionarias en el proceso de obtención de animales transgénicos.

                                          

La electroporación:
Es una técnica que crea o que dota a la membrana de cierta permeabilidad al DNA durante unos pocos segundos debido a una descarga eléctrica. Si la célula o grupo de células sometidas, a dicho choque eléctrico están sumergidas en un medio rico en plásmidos, alguno de ellos puede penetrar en una célula. El problema que suscita este método es que los choques eléctricos no pueden producir los efectos deseados en algunas células y dañarlas o matarlas debido a esta causa.

                           

Bibliografía:
Bacchetti S, Graham F (1977). "Transferencia del gen de la timidina quinasa a la timidina quinasa deficientes en células humanas por purificó herpes simplex ADN viral». Proc Natl Acad Sci U S A 74 (4). 1590-4.

9.1.5 TRANSFECCIÓN.

La transfección consiste en la introducción de material genético externo en células eucariotas mediante plásmidosvectores víricos u otras herramientas para la transferencia.


Son técnicas que se han desarrollado fundamentalmente para permitir la introducción de ácidos nucleicos en el interior de las células, han permitido en gran medida ampliar los conocimientos acerca de la regulación génica y de la función de las proteínas en los sistemas celulares. Actualmente se emplean en gran número de aproximaciones experimentales, en la generación de animales transgénicos, en la selección de líneas celulares modificadas.

Las técnicas de transfección actuales se pueden clasificar en los llamados métodos físicos (se basan en el uso de sistemas mecánicos, no biológicos, para lograr la inserción de material genético en las células) y los métodos químicos.

Las diferencias entre métodos químicos y físicos se encuentran a nivel metodológico, no a nivel de resultados, ya que el conjunto de métodos físicos no se basa en ningún sistema biológico, sino que pretende una inserción a la fuerza, de ese material genético. También hay que decir que este conjunto de técnicas sólo es funcional in vitro, ya que es necesaria la exposición de las células a medios extremos.

                                      
Bibliografía:
Graham FL, AJ van der Eb (1973). "Una nueva técnica para el ensayo de infectividad del adenovirus humano 5 ADN». Virología 52 (2). 456-67

9.1.4 RECOMBINACIÓN.


Es el proceso mediante el cual los elementos genéticos de dos orígenes diferentes se reúnen en una sola unidad. A nivel molecular, se puede considerar cómo un movimiento de información genética (secuencias de ácidos nucleicos) de una molécula de ácido nucleico a otra.

Una bacteria receptora puede recibir genes de otra bacteria donadora. Los genes donados entran a formar parte del genoma y son expresados por la bacteria receptora. Esto se debe no sólo a la posibilidad de transferencia de genes de una bacteria a otra, sino que también a los genes que entran a la nueva bacteria se recombinan con el genoma existente.


                        

Bibliografía:
http://www.slideshare.net/breid/recombinacin-gentica-bacteriana

9.1.3 TRANSDUCCIÓN.

Es la trasferencia de ADN de célula donadora a otra receptora mediante partículas de bacteriófagos que contienen ADN genómico de la primera.
Se distinguen dos etapas:

1.      Formación de la partícula fágica transductora:
      Un trozo de material genético de la célula donadora se introduce en el interior de la cabeza de la cápsida de un fago.

2.    La partícula transductora inyecta de forma habitual el ADN que porta a la célula receptora, donde este ADN puede eventualmente recombinarse y expresar su información.


                         

Transducción Generalizada
La transducción fue descubierta por Lederberg y Zinder y se llama transducción generalizada.

Se caracteriza porque en ella se puede transferir cualquier trozo de genóforo bacteriano, con tal de que tenga un tamaño compatible con la capacidad de empaquetado de ADN de la cápsida del fago. La partícula transductora pseudovirión se forma por empaquetamiento anómalo de ADN genofórico bacteriano. En el interior de la cabeza del pseudovirión sólo existe ADN bacteriano, sin ADN del fago. Las partículas transductoras sólo se forman como consecuencia de infecciones líticas del fago.

Transducción Especializada
En 1956, Lederberg junto con su mujer, y con Morse hallaron un tipo nuevo de transducción, mientras estaban estudiando el sistema del fago moderado & y su hospedador, E. coli. Este tipo de transducción recibió el nombre de transducción especializada.

Estas son algunas características distintivas:
Sólo se transfieren marcadores cromosómicos cercanos al sitio de integración del ADN del fago en la célula lisogénica.
Se produce únicamente como consecuencia de la inducción de la célula lisogénica por escisión del profago y consiguiente entrada a fase lítica, productora de nuevas partículas de fago.
El ADN genómico de la bacteria transportado por la partícula transductora va unido a ADN del fago.
La célula transductante se suele convertir en lisogénica para el fago correspondiente.

En este vídeo, se muestra dicho proceso:



Bibliografía:
http://bio2bach10.blogspot.mx/2011/04/transduccion_01.html

miércoles, 30 de mayo de 2012

9.1.2 CONJUGACIÓN.


Ocurre cuando una bacteria donadora F+ transmite a través de un puente o pili, un fragmento de ADN, a otra bacteria receptora F-. La bacteria que se llama F+ posee un plásmido, además del cromosoma bacteriano.
En la conjugación, el intercambio de material genético necesita de un contacto entre la bacteria dadora y la bacteria receptora. La cualidad de dador está unida a un factor de fertilidad (F) que puede ser perdido. La transferencia cromosómica se realiza generalmente con baja frecuencia. 

La duración del contacto entre bacteria dadora y bacteria receptora condiciona la importancia del fragmento cromosómico transmitido. El estudio de la conjugación ha permitido establecer los mapas cromosómicos de ciertas bacterias. La conjugación juega un papel en la aparición en las bacterias de resistencia a los antibióticos.


Ejemplo:

Se tiene una cepa receptora junto con material genético que aporta otra célula, de forma que a partir de ahí, puede producirse la conjugación, que es la transferencia de material; aunque para que sea viable, debe darse la recombinación gracias al proceso del entrecruzamiento. 
El intercambio genético no tiene lugar entre dos genomas completos como ocurre en eucariota, sino que, tiene lugar entre un genoma completo que se denomina endogenote, y otro incompleto, del donante, denominado exogenote. Obtendremos un merocigoto. La genética bacteriana es la genética de la merocigosis.

Para que la recombinación dé algún cromosoma viable que podrá ser circular, debe producirse un número par de entrecruzamientos, puesto que si no, no obtendremos ningún producto viable, sino un cromosoma largo lineal y extraño, parcialmente diploide. Si se da este número par de entrecruzamientos, obtendremos dos productos, uno que se perderá durante el crecimiento celular y otro que será viable. 




En este vídeo se muestra dicho proceso:


Bibliografía:
http://www.biologia.edu.ar/microgeneral/micro-ianez/27_micro.htm

9.1 MECANISMOS DE TRANSFERENCIA NATURAL

Algunas bacterias (cerca del 1% de todas las especies) son capaces de incorporar de manera natural, ADN bajo condiciones de laboratorio; y muchas más pueden ser capaces de hacerlo en sus ambientes naturales. Estas especies traen un conjunto de maquinaria genética específica para llevar el ADN a través de la membrana o membranas.


Los mecanismos de Transferencias natural en bacterias son:

*        Transformación
*        Conjugación
*        Transducción
*        Transfección

9.1.1 Transformación.

Se da cuando en determinadas condiciones fragmentos de ADN exógeno o ADN transformante con estructura helicoidal intacta pueden unirse a células bacterianas competentes y entrar en su interior. La entrada de estos segmentos necesita de la presencia de iones de k+, Mg++ y Ca++. El ADN entra en el espacio periplasmático, entre la pared celular y la membrana plasmática, allí una endonucleasas corta las dobles hélices en fragmentos de menor tamaño, posteriormente se degrada una de las dos hélices, de manera que lo que entra en el citoplasma es ADN de una hélice. Estos fragmentos de ADN monocatenario o ADN transformante pueden sustituir a fragmentos de ADN homólogo del cromosoma principal bacteriano mediante un mecanismo especial de recombinación. La recombinación genética tiene lugar entre el ADN transformante y el ADN de la bacteria receptora y se detecta por la aparición de bacterias descendientes transformadas para algún carácter. La existencia de este mecanismo permite construir Mapas genéticos de transformación.



En este vídeo se muestra dicho proceso:




Bibliografía:
Chen I, Dubnau D (2004). "ADN captación durante la transformación bacteriana».Nat. Rev. Microbiol. 2 (3): pp 241-9. doi: 10.1038/nrmicro844. PMID 15083159